
26 The Delphi Magazine Issue 33

Surviving Client/Server:
Code Tables
by Steve Troxell

Almost all database systems of
any size rely on code tables to

translate data values into meaning-
ful descriptions. For example, sup-
pose the system tracks employee
performance reviews. When print-
ing or displaying the review infor-
mation, you would like the word
‘Excellent’ to appear, but it is
impractical to store the full text for
every review for every employee in
the database. So instead we store a
shorter code value like ‘EXC’. We
might have a table called Employees
with a field called LastReviewRating
that contains the review code for
each employee. The description of
the review rating might be kept in a
separate table called Ratings with
fields RatingCode and RatingDesc,
like that shown in Figure 1. We
could then join the two tables as
shown in Figure 2 to make a report
of reviews for all employees.

Developers often refer to tables
such as Ratings as code tables, ref-
erence tables, or lookup tables.
Their main purpose is to provide a
meaningful description to a data-
base code value for screen or
report display. This is all simple
database design. But, as the com-
plexity of the software increases,
generally so do the number of code
tables required to support it.

The Human Resources / Payroll
system developed here at Ultimate
Software Group sports nearly 300
tables, not counting code tables.
Adding the individual code tables
would bring the total closer to 500.
That’s a lot of tables to keep track
of. The engineers at US Group, pri-
marily Mike Barrera, have devel-
oped a novel technique for
managing code tables which you
may find useful in your projects
whether you have 20 or 200 code
tables. From this point on the con-
text of the word ‘table’ could get
confusing, so I’m going to start
referring to the collection of values

RatingCode RatingDesc

EXC Excellent

SAT Satisfactory

UNS Unsatisfactory

POR Poor

➤ Figure 1: A code table for
review ratings

SELECT LastName, FirstName, RatingDesc
FROM Employees E, Ratings R
WHERE E.LastReviewRating = R.RatingCode

➤ Figure 2: Joining the main table to the code table

and descriptions for a given entity
as a ‘code list’. Figure 1 is the code
list for review ratings.

Generic Code Lists
In practice, the majority of code
lists are structurally similar: a
short code value character string
and a somewhat longer code
description character string. So
why not consolidate them all into
one large list? Instead of a physical
table for review ratings and a
separate physical table for, say,
employee status, we have a single
table called Codes containing all the
code lists, each identified by a
keyword. In Figure 3 we have two
logical tables (RevRating, EmpSta-
tus) represented within one
physical table (Codes).

CodeList CodeValue CodeDesc

REVRATING EXC Excellent

REVRATING SAT Satisfactory

REVRATING UNS Unsatisfactory

RAVRATING POR Poor

EMPSTATUS A Active

EMPSTATUS O On Strike

EMPSTATUS B Leave of Absence

EMPSTATUS L Laid Off

EMPSTATUS T Terminated

EMPSTATUS S Suspended

➤ Figure 3: The general-purpose Codes table

Now to reproduce the query we
had in Figure 2, we join to Codes and
specify the code list we want, as
shown in Figure 4.

Granted this makes the joining
slightly more complex due to the
need to match two fields rather
than one, but the impact of this can
be minimized by indexing the

SELECT LastName, FirstName, CodeDesc AS RatingDesc
FROM Employees E, Codes C
WHERE E.LastReviewRating = C.CodeValue AND C.CodeList = ‘REVRATING’

➤ Figure 4: Joining the main table to the Codes table



28 The Delphi Magazine Issue 33

CodeList and CodeValue fields. On
the other hand, it is often the case
that the individual code lists con-
tain a small number of values. So
by consolidating them into one
physical table we may actually be
maximizing the total number of
code values cached on the server
at any one time. We are only deal-
ing with the cache for a single table
instead of a separate cache for
each table.

The real value of this technique
is simplified project management,
although it may not seem apparent
from the two code lists shown in
Figure 3. When multiplied by the
1,051 codes spread across the 153
code lists in US Group’s HRMS
system, code maintenance is
greatly simplified by having every-
thing in one tidy package.

On the data-entry side of the
system, the code values are pre-
sented to the user in the form of
‘pick lists’, or dropdown combo
boxes. The dropdown lists are
populated from the corresponding
code lists in the table Codes. Since
we have a central repository for all
our various code lists, it is fairly
straightforward to build a custom
combo box component that lets us
select the code list to use for popu-
lating the dropdown list. For exam-
ple, we could have a combo box
property called CodeList which
tells the combo box to load its
Items property from a particular
code list in the table Codes. Design-
ing a form containing a pick list
becomes a simple matter of
dropping down a combo box
component and setting a single
property.

Code Lists From Main Tables
However, the generic approach
illustrated by the table shown in
Figure 3 only handles simple code
values and their descriptions.

What if the system contains pick
lists derived from more compli-
cated data structures? For exam-
ple, a screen for setting up
employee payroll deductions
would have a pick list for all the
possible deductions that might
appear on a payroll check. Employ-
ees might elect to have deductions
for medical programs, life insur-
ance, retirement plans, and so
forth. The table defining all the
possible deductions would cer-
tainly be much more complicated
than the simple structure shown in
Figure 3. The deduction table
would include fields for plan
account numbers, effective dates,
deduction amounts and frequen-
cies, and a host of other data nec-
essary to manage the deductions.
However, the pick list for deduc-
tions is still a simple code value
and code description, even if those
two simple fields are embedded
within a more complicated table
structure.

Why did I bring this up? This isn’t
any particular problem, we simply
query the deduction code value
and description from the deduc-
tion table rather than our nice, tidy
generic table Codes. So we have to
forego the convenience of our
fancy custom combo box compo-
nent which does the work of popu-
lating the dropdown list
automatically. We just write a
simple SQL query and populate it
the old fashioned way. It’s a special
case. Or is it?

The CodeDrivers Table
The engineers at US Group
addressed this by creating
another table called a ‘driver’
table, which contains one row for
every possible code list in the
system. Some of those code lists
would be defined in the table Codes
and some in other dedicated
tables. Figure 5 shows the general
structure of the CodeDrivers table.

In the driver table, the CodeList
field identifies the list of values we
want. This is not necessarily the
name of a physical table in the
database, but simply an identifier
by which we reference the code
list. The Description field is a
simple description used by our
custom combo box component to
help identify code lists. The Table-
Name field refers to the physical
table in which the code list can be
found. Most of the time, the code
list will be within the Codes table. In
the case of the deduction codes,
the values are found in the main
table Deductions, which presuma-
bly contains additional fields to
support deduction processing.
The CodeField field contains the
name of the field in the physical
table in which we can find the code
value (to store in the data tables).
For example, the review rating
codes are found in Codes.Code-
Value. The DescField field contains
the name of the field in the physi-
cal table in which we can find the
text description of the code (to
display in the pick list).

With this information we can
easily write code to generate the
appropriate SQL statement to
retrieve the code list no matter
where it’s located. The logic
breaks down to two cases: either
the list is among the majority of
code lists stored in the Codes table,
or it’s in a separate table specifi-
cally set up for it. Figure 6 shows

If we select the EMPSTATUS code table, we generate:
SELECT CodeValue AS Value, CodeDesc AS Descr
FROM Codes
WHERE CodeTable = ‘EMPSTATUS’
ORDER BY Descr

If we select the DEDCODE code table, we generate:
SELECT DedCode as Value, DedDesc AS Descr
FROM Deductions
ORDER BY Descr

➤ Figure 6: Dynamic SQL derived from CodeDrivers

CodeList Description TableName CodeField DescField

REVRATING Review Rating Codes CodeValue CodeDesc

EMPSTATUS Employee Status Codes CodeValue CodeDesc

DEDCODE Deduction Code Deductions DedCode DedDesc

➤ Figure 5: The CodeDrivers table



May 1998 The Delphi Magazine 29

examples of the SQL needed for
these two cases.

As you can see, all of our code
lists can be accounted for in the
CodeDrivers table. Our pick list
combo box component can exam-
ine the fields TableName, CodeField
and DescField to generate a
dynamic SQL statement to retrieve
the dropdown list values. Our logic
recognizes the table name Codes as
a special case and knows to filter
the rows based on the Codes.
CodeTable field. Notice, also, that
no matter what the names of the
source fields are, we alias them to
the consistent names Value and
Descr in the result set.

Customizing The Code Lists
Sometimes the values available in
any given code list may vary
depending on the circumstances.
For example, there may be more
deductions available to full-time
employees than part-time, retire-
ment benefit deductions, for
example.

Let’s say that the Deductions
table contains a field called DedA-
vailability which is set to one of
three values: F for deductions
available only to full-time employ-
ees, P for deductions available only
to part-time employees, or A for

deductions available to all employ-
ees regardless of status. Presuma-
bly, when we have a pick list for
employee deductions on a screen,
we want the values available in the
pick list to vary depending on
whether we are examining a full-
time or part-time employee. We
can support this by adding a field
to CodeDrivers called CustomFilter.
This field will optionally contain a
filter statement to be used in con-
structing a WHERE clause for popu-
lating the code list. We then create
two new entries in CodeDrivers: one
for full-time employee deductions
and one for part-time employee
deductions, as shown in Figure 7.
We leave the original code list
‘Deduction Code’ as a third entry
to be used in cases where we don’t
care about the availability restric-
tion. For example, we might need
this for general purpose joining in a
report of all employees.

Notice that all three deductions
code lists derive from the same
table: Deductions. However, the
full-time and part-time lists are
handled as special cases by the
presence of a nonnull value in the
CustomFilter field. If the custom
combo box component detects a
non-null value in this field, it adds a
WHERE clause to the SQL statement
it generated to filter the code list
accordingly. Figure 8 shows the
resulting SQL.

For DEDCODE:
SELECT DedCode as Value, DedDesc AS Descr
FROM Deductions
ORDER BY Descr

For DEDCODE_FT:
SELECT DedCode as Value, DedDesc AS Descr
FROM Deductions
WHERE DedAvailability <> ‘P’
ORDER BY Descr

For DEDCODE_PT:
SELECT DedCode as Value, DedDesc AS Descr
FROM Deductions
WHERE DedAvailability <> ‘F’
ORDER BY Descr

➤ Figure 8: Custom SQL for deduction codes

Conclusion
Code tables are a basic element of
almost all database projects. The
larger and more complex the proj-
ect, the more useful a technique
for simplifying the management
and maintenance of those code
tables becomes. The approach
shown here has simplified project
management for US Group and
hopefully you will find elements of
it useful in your projects as well.

Steve Troxell is a software
engineer for Ultimate Software
Group in the USA. He can be
reached via email at
Steve_Troxell@USGroup.com

CodeList Description TableName CodeField DescField CustomFilter

REVRATING Review Rating Codes CodeValue CodeDesc <null>

EMPSTATUS Employee Status Codes CodeValue CodeDesc <null>

DEDCODE Deduction Code Deductions DedCode DedDesc <null>

DEDCODE_FT Deduction Code: Full Time Deductions DedCode DedDesc DedAvailability <> ‘P’

DEDCODE_PT Deduction Code: Part Time Deductions DedCode DedDesc DedAvailability <> ‘F’

➤ Figure 7: CodeDrivers for
custom code lists


	Generic Code Lists
	Code Lists From Main Tables
	The CodeDrivers Table
	Customizing The Code Lists
	Conclusion

